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Nanocrystalline fcc Materials 

• Transition in deformation 
mechanism in fcc metals as 
grain size decreases to the 
nano-scale (gs< 1 OOnm) 
• Dislocation-based ) Grain 

boundary sliding (gs<10nm) 
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• Length-scale competition between 
grain size and stacking fault width. 

Van Swygenhoven , 
1999 

• At grain sizes of -30-50nm, c 0.08 

plastic deformation is primarily .~ 0.06 
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Partial Dislocations 
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• fcc metals plastically deform 
through the motion of 
extended dislocations. 

Dissociation of a perfect edge dislocation. 

• In bulk and large grained 
materials, these extended 
dislocations are very close (-1nm) 
and are often considered a single 
unit called a perfect dislocation. 

• In nanocrystalline metals, this 
assumption is inaccurate. 

• When atoms slide past each other 
they move in a zig-zag motion. 

- More energetically favorable. 

bedge 
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Schematic showing slip and 
dislocation dissociation in a 

fcc metal. 
EST. 19 4 3 

bPI 

10nm 

Yamakov, 2003 
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Outline 

• 3D PFDD Model Formulation 
• Phase field variable 

• System energy and evolution 
- Elastic interaction energy 

- GSF Energy - Perfect Dislocations 

- GSF Energy - Partial Dislocations 

• Modeling the ,,{-surface 

• Simulations and Results 
• Verification with analytical solution 

• Size Effects 
- Dislocation nucleation vs. dislocation growth 

• Summary 'and Future Research Goals 
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• The phase field model tracks individual dislocations. 

• The dislocation collective is described by the phase 
field variable, defined over each slip plane. 

• Phase field is integer valued, and records (including 
sign) the number of dislocations that cross over the slip 
plane in units of the Burger's vector. 
• The location of a dislocation line corresponds to an integer jump in 

the phase field . 
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Model Formulation 

• Consider a crystal undergoing deformation 
• Elastic (reversible) deformation 

° Plastic (permanent) deformation Ui,j = f3 fj + f3~ 
• Plastic deformation is mediated by the 

motion and interaction of dislocations 
• Can be directly related to the phase field: 

1 q 

f3t (x ) = - L b (ex) ( (ex, x) Si (ex) mj (ex) 
w 

a=l 

• Temporal evolution of the phase field is driven by 
minimization of the total energy of the system. 

a( (0, x , t) == -L bE 
at b( (0, x, t) bE 

~ 
~~ 
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A O Steady-state Ginzburg-Landau Equation • J( (ct, x, t) = 0 
Los Alamos 
NATIONAL LABORATORY Koslowski, 2002; Wang, 2001; Hunter, 2008 
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A5C Dislocation Energy 

• Total energy of the dislocation ensemble in a material 
system: E == Eelast + E GSF 

• Elastic Interaction Energy 

• Core Energy 

• Elastic Interaction Energy 
• Internal - dislocation-dislocation interactions 

- Elastic term, must be written in terms of the plastic phase field variable 

• External - dislocation interactions with applied stress 
- Zero applied stress for simulations presented later 

E elast = E int + E ext = ,_ 
1

, 0 J [~ Cijkl's:;'n (k) ,s~~ (k) - kiUij (k) o'jk (k) ukl (k) kl] d3 k 

-J (J"c:,?pl {31? d3 x 
~J ~J 
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GSF Energy - Perfect Dislocations ASC" 

• Accounts for energy required to move the dislocation 
core through the crystal lattice GSF L3 L4 1 2 

E == ¢a [(a(x)]d x 
• Mimics Peierls Potential n n 

a =l n=l S n 

- Periodic due to periodic nature of crystal lattice 

• Can be described using several different functional 
f EGSF 
orms Al 

• Piecewise Quadratic 

• Sinusoidal 
- Fourier Sine Series o b 2b 3b 4b 

~A~~m~ NATI O NAL 

• Positive constant can be obtained from molecular dynamics (MD) 
simulations 

E
GSF 

= J [i~AlSin2(7r((a' x))l d
3
x 

Koslowski, 2002; Ortiz, 1999; Wang, 2001; Hunter, 2010 
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• Energetically favorable for defects to overcome two 
small energy barriers rather than one large barrier 
• Frank's rule ) b2 > p~ + p~ 

• y-surface accounts for additional energy 
required to create a stacking fault 
• Global minima ) displacement step of a Burger's vector 

Hunter, 2011 

- Lowest possible energy configuration 

• Local minima -+ partial dislocation direction 

11."''' ~·J 

~ 
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y-surface for 
Aluminum 

~ Alamos "'~'~";'y=generalized stackin 
NATIONAE\TL~~~RATORY Vitek, 1968 . fault energy .......... ' ! ! , 
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Modeling they-surface 

• 

• 

The three active slip systems must be 
coupled 
• Linear combination of the phase fields needed 

to produce displacements in (112) directions 

Fit complex Fourier series to y-surface 
found using MD simulations 
• 7 coefficients 

E core ((1, (2, (3) = { CO + C1 [coS27r ((1 - (2) + COS27r ((2 - (3) + COS27r ((3 - (1)] 

~Alamos 

+ C2 [COS27r (2(1 - (2 - (3) + cos27r (2(2 - (3 - (1) + cos27r (2(3 - (1 - (2)] 

+ C3 [COS47r ((1 - (2) + COS47r ((2 - (3) + COS47r ((3 - (1)] 

+ C4 [COS47r (3(1 - (2 - 2(3) + cos47r (3(1 - 2(2 - (3) 

+ cos47r (3(2 - (3 - 2(1) + cos47r (3(2 - 2(3 - (1) 

+ cos47r (3(3 - (1 - 2(2) + cos47r (3(3 - 2(1 - (2)] 

+ a1[sin27r ((1 - (2) + sin27r ((2 - (3) + sin27r ((3 - (1)] 

+ a3 [sin47r ((1 - (2) + sin47r ((2 - (3) + sin47r ((3 - (l)} /W 
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Simulations 

• Infinitely long dislocation, periodic 
boundary conditions 
• Edge Orientation - Larger elastic energy 

component allows partials to dissociate farther 

• Screw Orientation - Elastic energy smaller by a 
factor of (1 - v) 1.2
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• Compare equilibrium stacking fault widths from 
simulations to analytical solutions 
• Burger's vector reaction: b1 ---+ b2 + b3 or ~ [101] ---+ ~ [2H] + ~ [112] 

• 
ry I = /1 [( b2 . 6) (b

3 
. 6) + (b2 X 6) . (b3 X 6)] 

1f'Te 1 -v 
.c • ;2 > , , -

Material Analytical (b) 

Ale 2.54 

. AIS 1.04 

Pde 4.15 

Pds 1.54 

Nie 8.04 

NiS 5.11 
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potentials Hunter, 2011 
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Simulations 

• Initial Conditions: 
• Perfect dislocation 
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- Only 1 active phase field 

• Boundary Conditions: 
• Fixed grain boundaries 

- 4b thick 

• Half Loop 

• Cluster of obstacles 
- Fixed/trapped dislocations 

• Nickel 
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• Applied Stress 
• Shear stress, cr13 
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Dislocation Nucleation 
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Grain size has little impact 
on defect nucleation 
• Dependence seen in very small . . 
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Dislocation Growth 
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Size Effects 
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Summary and Future Research ASC 

• Successful implementation of partial dislocations through 
reformulation of the generalized stacking fault (GSF) energy 
• Included dependence of Peierls potential on the y-surface 

• Results had good comparison to analytical solution and MD 
simulations 

- Infinitely long dislocation lines - equilibrium stacking fault widths 

• Apply partial dislocation implementation to study size effects 
• Grain size variation has little impact on dislocation nucleation 

- Variation in the initial defect size has a much larger impact on nucleation 

• Grain Size variation does impact dislocation growth 
- Emergence of trailing partial has large dependence on grain size 

• Future research goals 
• I nvestigate twinning 

A · Implement grain boundary energy 
• LosAlamos 
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The inelastic response of crystalline materials is mediated by dislocation motion and their interaction with defects, such as 
second phase particles, dislocations, grain boundaries and voids. Accounting for such defect interactions is particularly 
important when the scale of the volume analysis approaches low dimensional microstructure scales as in micron and sub­
micron size devices, and nanocrystalline materials. Specifically, when the internal microstructure (i.e. grain size, film 
thickness) approaches tens of nanometers a transition in dominant deformation mechanisms occurs, and plasticity is 
mediated through the motion and interaction of Shockley partial dislocations in addition to perfect dislocations. This research 
investigates this deformation mechanism transition in fcc metals using a 3D phase field dislocation dynamics (3~ PFOO) 
model that incorporates a dependency on the material y-surface in order to model dislocation dissociation. In addition, size 
effects and the impact of confinement are discussed in relation to the stacking fault width between leading and trailing partial 
dislocations. 
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